Луна движется вокруг земли по круговой. Лунные аномалии или фальшивая физика? Задача трех тел в классической постановке

Напомним основные характеристики орбиты движения Луны относительно Земли.

Луна движется вокруг Земли по орбите, близкой к круговой (среднее значение эксцентриситета составляет 0,05). Продолжительность одного оборота Луны составляет примерно - 27,3 суток. Расстояние ее от Земли равно в среднем 384000 км. За счет имеющейся, хотя и незначительной, эллиптичности орбиты ее наибольшее расстояние от Земли (в апогее) достигает 405500 км и наименьшее (в перигее) 363000 км. Скорость движения Луны по орбите составляет примерно 1,02 км/сек. Совершая полет с такой скоростью, Луна описывает по небесной сфере за каждые сутки дугу около 13°. Плоскость орбиты Луны относительно плоскости экватора Земли беспрерывно изменяется в диапазоне от 18° до 28°. В 1970 г. наклонение плоскости орбиты составляло около 28°. Это означает, что в течение каждого месяца Луна побывает над экватором на высоте 28° и под ним, опустившись тоже на угол 28°.

Луны можно достигнуть различными путями. К настоящему времени реализованы следующие виды полетов к Луне:

Полет вблизи Луны с последующим выходом космического аппарата за пределы сферы действия Земли и превращением его в спутник Солнца - искусственную планету ("Луна-1", "Пионер-4");

Полет с "жестким" попаданием в Луну ("Луна-2", "Рейнджер-7");

Полет с мягкой посадкой на Луну без выхода на промежуточную орбиту ее спутника ("Луна-9", "Сервейор-1");

Полет с выходом на орбиту спутника Луны без посадки и без возвращения на Землю (беспилотные - "Луна-10", "Лу-нар-Орбитар-1");

Полет с выходом на орбиту спутника Луны без посадки на Луну, но с возвращением на Землю ("Апполон-8");

Облет Луны с возвращением на Землю ("Зонд-5");

Полет с выходом на орбиту спутника Луны, посадка на Луну и возвращение на Землю ("Апполон-11", "Луна-16").

Отсюда хорошо видна общая логическая целенаправленность освоения Луны и последовательное усложнение схемы полета. Каждый из указанных видов полета представлял собой самостоятельный интерес и позволил решить определенный круг научных и технических задач.

Теперь посмотрим, каковы те общие принципы, которые положены в основу различных вариантов полета к Луне. Главным критерием, который предопределяет способ расчета и выбора траекторий полета к Луне, является точность расчета при минимальной затрате энергии (т. е. топлива) на осуществление всех маневров и возможность обеспечения полета средствами наземного или автономного комплекса. В соответствии с этим различают приближенные и точные способы расчета орбит.

Приближенные способы основываются на использовании эллиптической теории движения космических аппаратов. Как известно, Луна находится в сфере действия Земли. Поэтому траекторию полета к Луне, целиком лежащую внутри сферы действия Земли, можно приближенно рассчитывать по эллиптической теории, считая, что космический аппарат производит вначале полет только под действием притяжения Земли. Притяжением Луны, Солнца и нецентральностью поля Земли в этом случае пренебрегают. Полученная траектория протягивается в направлении к Луне до тех пор, пока космический аппарат не войдет в сферу действия Луны, т. е. не окажется на расстоянии 66 тыс. км от ее центра. Начиная с этого момента траектория движения рассчитывается только с учетом притяжения Луны, а притяжением Земли и Солнца пренебрегают. Если далее космический аппарат, удаляясь от Луны, снова окажется на расстоянии 66 тыс. км от нее, то снова влияние Луны исключается и в последующем считается, что полет происходит только в поле действия Земли.

Так баллистики приспособили эллиптическую теорию для решения задачи трех тел. Часто этот способ называют разделением движения космического аппарата по сферам действия небесных тел. Конечно, он является приближенным и может годиться только для качественного анализа траекторий полета. Но ввиду его алгоритмической простоты он находит самое широкое применение в массовых исследованиях полетов к Луне. Когда же дело касается реальных пусков, то применяются либо методы численного расчета траекторий, либо как-то поправленная искусственным образом теория эллиптического движения.

студента

Название

Если вектор скорости тела задан приведенной на рисунке формулой, где А и В - некоторые постоянные, i и j - орты координатных осей, то траектория тела...

Прямая линия.

Мяч бросили в стену со скоростью, горизонтальная и вертикальная составляющие которой равны 6 м/с и 8 м/с соответственно. Расстояние от стены до точки бросания L = 4 м. В какой точке траектории будет находиться мяч при ударе о стенку?

студента

Название

студента

Название

На подъеме.

При каком движении материальной точки нормальное ускорение отрицательно?

Такое движение невозможно.

студента

Название

Материальная точка вращается по окружности вокруг неподвижной оси. Для какой зависимости угловой скорости от времени w(t) при вычислении угла поворота применима формула Ф = wt.

Колесо машины имеет радиус R и вращается с угловой скоростью w. Сколько времени t

потребуется машине для того, чтобы без проскальзывания проехать расстояние L? Укажите номер правильной формулы. Ответ:2

Название кадра

Как изменятся величина и направление векторного произведения двух неколлинеарных векторов при увеличении каждого из сомножителей в два раза и изменении их направлений на противоположные?

Ответ студента

Модуль увеличится в четыре раза, направление

не изменится.

Время ответа

14.10.2011 15:30:20

Оценка системы

Название кадра

Проекция ускорения материальной точки изменяется в соответствии с изображенным графиком. Начальная скорость равна нулю. В какие моменты времени скорость материальной точки меняет направление?

Ответ студента

Название

студента

Название

Как может быть направлен вектор ускорения тела, движущегося по изображенной траектории, при прохождении точки P?

Под любым углом в сторону вогнутости.

Угол поворота маховика изменяется по закону Ф(t) =А·t·t·t, где А = 0,5 рад/с3 , t - время в секундах. До какой угловой скорости (в рад/с) разгонится маховик за первую секунду с момента начала движения? Ответ: 1.5

Название frame205

Название

студента

Твердое тело вращается с угловой скоростью w вокруг неподвижной оси. Укажите правильную формулу для вычисления линейной скорости точки тела, находящейся на расстоянии r от оси вращения. Ответ: 2

Луна обращается вокруг Земли по круговой орбите так, что одна ее сторона постоянно обращена к Земле. Какова траектория движения центра Земли относительно космонавта, находящегося на Луне?

Отрезок прямой.

Окружность.

Ответ зависит от местонахождения космонавта на Луне.

04.10.2011 14:06:11

Название frame287

По приведенному графику скорости движущегося человека определите сколько метров он прошел между двумя остановками. Ответ: 30

Название frame288

Тело брошено под углом к горизонту. Сопротивлением воздуха можно пренебречь.В какой из точек траектории скорость изменяется по величине с максимальной быстротой. Укажите все правильные ответы.

Ответ A студента E

Название frame289

студента

Название

Маховик вращается как показано на рисунке. Вектор углового ускорения В направлен перпендикулярно плоскости рисунка к нам и постоянен по величине. Как направлен вектор угловой скорости w и каков характер вращения маховика?

Вектор w направлен от нас, маховик тормозится.

Материальная точка движется по окружности, причем ее угловая скорость w зависит от времени t так, как показано на рисунке. Как при этом изменяются ее нормальное An и

студента

Название

тангенциальное Aт ускорения?

An увеличивается, Aт не изменяется.

Ускорение тела имеет постоянную величину А = 0,2 м/с2 и направлено вдоль оси Х. Начальная скорость равна по величине V0 = 1 м/с и направлена по оси Y. Найдите тангенс угла между вектором скорости тела и осью Y в момент времени t = 10 с. Ответ: 2

Название frame257

студента

Название

По приведенному графику проекции скорости определите проекцию перемещения Sх за все время движения.

Точка равномерно движется по траектории, изображенной на рисунке. В какой точке (каких точках) тангенциальное ускорение равно 0?

На всей траектории.

студента

Название

Тело поворачивается вокруг неподвижной оси, проходящей через точку О перпендикулярно плоскости рисунка. Угол поворота зависит от времени: Ф(t) = Ф0 sin(Аt), где А = 1рад/c, Ф0 - положительная постоянная. Как ведет себя угловая скорость точки А в момент времени t = 1 с?

Ответ студента Убывает.

Название frame260

Диск радиусом R раскручивается с постоянным угловым ускорением ε. Укажите формулу расчета тангенциального ускорения точки А на ободе диска при угловой скорости w. Ответ:5

Название frame225

Колесо катится по дороге без проскальзывания с возрастающей скоростью. Выберите правильную формулу для вычисления углового ускорения колеса, если скорость центра колеса увеличивается пропорционально времени. Ответ:4

Название кадра

Если координаты тела изменяются со временем t по

уравнениям x = A·t , y = B·t·t , где А и В - постоянные, то

траектория тела...

Ответ студента

Парабола.

Название

Светлой памяти моего учителя - первого декана физико-математического факультета Новочеркасского политехнического института, заведующего кафедрой «Теоретическая механика» Кабелькова Александра Николаевича

Введение

Август, лето подходит к концу. Народ яростно рванул на моря, да оно и неудивительно - самый сезон. А на Хабре, тем временем, . Если говорить о теме данного выпуска «Моделирования...», то в нем мы совместим приятное с полезным - продолжим обещанный цикл и совсем чуть-чуть поборемся с этой самой лженаукой за пытливые умы современной молодежи.

А вопрос ведь действительной не праздный - со школьных лет мы привыкли считать, что наш ближайший спутник в космическом пространстве - Луна движется вокруг Земли с периодом 29,5 суток, особенно не вдаваясь в сопутствующие подробности. На самом же деле наша соседка своеобразный и в какой-то степени уникальный астрономический объект, с движением которого вокруг Земли не всё так просто, как, возможно хотелось бы некоторым моим коллегам из ближайшего зарубежья.

Итак, оставив полемику в стороне, попытаемся с разных сторон, в меру своей компетенции, рассмотреть эту безусловно красивую, интересную и очень показательную задачу.

1. Закон всемирного тяготения и какие выводы мы можем из него сделать

Открытый ещё во второй половине 17 века, сэром Исааком Ньютоном, закон всемирного тяготения говорит о том, что Луна притягивается к Земле (и Земля к Луне!) с силой, направленной вдоль прямой, соединяющей центры рассматриваемых небесных тел, и равной по модулю

где m 1 , m 2 - массы, соответственно Луны и Земли; G = 6,67e-11 м 3 /(кг * с 2) - гравитационная постоянная; r 1,2 - расстояние между центрами Луны и Земли. Если принимать во внимание только эту силу, то, решив задачу о движении Луны как спутника Земли и научившись рассчитывать положение Луны на небе на фоне звезд, мы довольно скоро убедимся, путем прямых измерений экваториальных координат Луны, что в нашей консерватории не всё так гладко как хотелось бы. И дело здесь не в законе всемирного тяготения (а на ранних этапах развития небесной механики такие мысли высказывались весьма нередко), а в неучтенном возмущении движения Луны со стороны других тел. Каких? Смотрим на небо и наш взгляд сразу упирается в здоровенный, массой аж 1,99e30 килограмм плазменный шар прямо у нас под носом - Солнце. Луна притягивается к Солнцу? Ещё как, с силой, равной по модулю

где m 3 - масса Солнца; r 1,3 - расстояние от Луны до Солнца. Сравним эту силу с предыдущей

Возьмем положение тел, в котором притяжение Луны к Солнцу будет минимальным: все три тела на одной прямой и Земля располагается между Луной и Солнцем. В этом случае наша формула примет вид:

где , м - среднее расстояние от Земли до Луны; , м - среднее расстояние от Земли до Солнца. Подставим в эту формулу реальные параметры

Вот это номер! Получается Луна притягивается к Солнцу силой, более чем в два раза превышающей силу её притяжения к Земле.

Подобное возмущение уже нельзя не учитывать и оно определенно повлияет на конечную траекторию движения Луны. Пойдем дальше, принимая во внимание допущение о том, что орбита Земли круговая с радиусом a, найдем геометрическое место точек вокруг Земли, где сила притяжения любого объекта к Земле равна силе его притяжения к Солнцу. Это будет сфера, с радиусом

смещенная вдоль прямой, соединяющей Землю и Солнце в сторону противоположенную направлению на Солнце на расстояние

где - отношение массы Земли к массе Солнца. Подставив численные значения параметров получим фактические размеры данной области: R = 259300 километров, и l = 450 километров. Эта сфера носит название сферы тяготения Земли относительно Солнца .

Известная нам орбита Луны лежит вне этой области. То есть в любой точке траектории Луна испытывает со стороны Солнца существенно большее притяжение, чем со стороны Земли.

2. Спутник или планета? Гравитационная сфера действия

Эта информация, часто порождает споры , о том, что Луна не спутник Земли, а самостоятельная планета Солнечной системы, орбита которой возмущена притяжением близкой Земли.

Оценим возмущение, вносимое Солнцем в траекторию Луны относительно Земли, а так же возмущение, вносимое Землей в траекторию Луны относительно Солнца, воспользовавшись критерием, предложенным П. Лапласом. Рассмотрим три тела: Солнце (S), Землю (E) и Луну (M).
Примем допущение, что орбиты Земли относительно Солнца и Луны относительно Земли являются круговыми.


Рассмотрим движение Луны в геоцентрической инерциальной системе отсчета. Абсолютное ускорение Луны в гелиоцентрической системе отсчета определяется действующими на неё силами тяготения и равно:

С другой стороны, в соответствии с теоремой Кориолиса, абсолютное ускорение Луны

где - переносное ускорение, равное ускорению Земли относительно Солнца; - ускорение Луны относительно Земли. Ускорения Кориолиса здесь не будет - выбранная нами система координат движется поступательно. Отсюда получаем ускорение Луны относительно Земли

Часть этого ускорения, равная обусловлена притяжением Луны к Земле и характеризует её невозмущенное геоцентрическое движение. Оставшаяся часть

ускорение Луны, вызванное возмущением со стороны Солнца.

Если рассматривать движение Луны в гелиоцентрической инерциальной системе отсчета, то всё намного проще, ускорение характеризует невозмущенное гелиоцентрическое движение Луны, а ускорение - возмущение этого движения со стороны Земли.

При существующих в текущую эпоху параметрах орбит Земли и Луны, в каждой точке траектории Луны справедливо неравенство

что можно проверить и непосредственным вычислением, но я сошлюсь , дабы излишне не загромождать статью.

Что означает неравенство (1)? Да то, что в относительном выражении эффект от возмущения Луны Солнцем (причем очень существенно) меньше эффекта от притяжения Луны к Земле. И наоборот, возмущение Землей геолиоцентрической траектории Луны оказывает решающее влияние на характер её движения. Влияние земной гравитации в данном случае более существенно, а значит Луна «принадлежит» Земле по праву и является её спутником.

Интересным является другое - превратив неравенство (1) в уравнение можно найти геометрическое место точек, где эффекты возмущения Луны (да и любого другого тела) Землей и Солнцем одинаковы. К сожалению это у же не так просто, как в случае со сферой тяготения. Расчеты показывают, что данная поверхность описывается уравнением сумасшедшего порядка, но близка к эллипсоиду вращения. Всё что мы может сделать без лишних заморочек, это оценить общие габариты этой поверхности относительно центра Земли. Решая численно уравнение

относительно расстояния от центра Земли до искомой поверхности на достаточном количестве точек, получаем сечение искомой поверхности плоскостью эклиптики


Для наглядности здесь показаны и геоцентрическая орбита Луны и, найденная нами выше сфера тяготения Земли относительно Солнца. Из рисунка видно, что сфера влияния, или сфера гравитационного действия Земли относительно Солнца есть поверхность вращения относительно оси X, сплющенная вдоль прямой, соединяющей Землю и Солнце (вдоль оси затмений). Орбита Луны находится глубоко внутри этой воображаемой поверхности.

Для практических расчетов данную поверхность удобно аппроксимировать сферой с центром в центра Земли и радиусом равным

где m - масса меньшего небесного тела; M - масса большего тела, в поле тяготения которого движется меньшее тело; a - расстояние между центрами тел. В нашем случае

Вот этот недоделанный миллион километров и есть тот теоретический предел, за который власть старушки Земли не распространяется - её влияние на траектории астрономических объектов настолько мало, что им можно пренебречь. А значит, запустить Луну по круговой орбите на расстоянии 38,4 млн. километров от Земли (как делают некоторые лингвисты) не получится, это физически невозможно.

Эта сфера, для сравнения, показана на рисунке синей пунктирной линией. При оценочных расчетах принято считать, что тело, находящееся внутри данной сферы будет испытывать тяготение исключительно со стороны Земли. Если тело находится снаружи данной сферы - считаем что тело движется в поле тяготения Солнца. В практической космонавтике известен метод сопряжения конических сечений, позволяющий приближенно рассчитать траекторию космического аппарата, используя решение задачи двух тел. При этом всё пространство, которое преодолевает аппарат разбивается на подобные сферы влияния.

Например, теперь понятно, для того чтобы иметь теоретическую возможность совершить маневры для выхода на окололунную орбиту, космический аппарат должен попасть внутрь сферы действия Луны относительно Земли. Её радиус легко рассчитать по формуле (3) и он равен 66 тысяч километров.

3. Задача трех тел в классической постановке

Итак, рассмотрим модельную задачу в общей постановке, известную в небесной механике как задача трех тел. Рассмотрим три тела произвольной массы, расположенных произвольным образом в пространстве и движущихся исключительно под действием сил взаимного гравитационного притяжения


Тела считаем материальными точками. Положение тел будем отсчитывать в произвольном базисе, с которым связана инерциальная система отсчета Oxyz . Положение каждого из тел задается радиус-вектором соответственно , и . На каждое тело действует сила гравитационного притяжения со стороны двух других тел, причем в соответствии с третьей аксиомой динамики точки (3-й закон Ньютона)

Запишем дифференциальные уравнения движения каждой точки в векторной форме

Или, с учетом (4)


В соответствии с законом всемирного тяготения, силы взаимодействия направлены вдоль векторов

Вдоль каждого из этих векторов выпустим соответствующий орт

тогда каждая из гравитационных сил рассчитывается по формуле

С учетом всего этого система уравнений движения принимает вид

Введем обозначение, принятое в небесной механике

- гравитационный параметр притягивающего центра. Тогда уравнения движения примут окончательный векторный вид

4. Нормирование уравнений к безразмерным переменным

Довольно популярным приемом при математическом моделировании является приведение дифференциальных уравнений и прочих соотношений, описывающих процесс, к безразмерным фазовым координатам и безразмерному времени. Нормируются так же и другие параметры. Это позволяет рассматривать, хоть и с применением численного моделирования, но в достаточно общем виде целый класс типовых задач. Вопрос о том, насколько это оправдано в каждой решаемой задаче оставляю открытым, но соглашусь, что в данном случае такой подход вполне справедлив.

Итак, введем некое абстрактное небесное тело с гравитационным параметром , такое, что период обращения спутника по эллиптической орбите с большой полуосью вокруг него равен . Все эти величины, в силу законов механики, связаны соотношением

Введем замену параметров. Для положения точек нашей системы

где - безразмерный радиус-вектор i-й точки;
для гравитационных параметров тел

где - безразмерный гравитационный параметр i-й точки;
для времени

где - безразмерное время.

Теперь пересчитаем ускорения точек системы через эти безразмерные параметры. Применим прямое двукратное дифференцирование по времени. Для скоростей

Для ускорений

При подстановке полученных соотношений в уравнения движения всё элегантно схлопывается в красивые уравнения:

Данная система уравнений до сих пор считается не интегрируемой в аналитических функциях. Почему считается а не является? Потому что успехи теории функции комплексного переменного привели к тому, что общее решение задачи трех тел таки появилось в 1912 году - Карлом Зундманом был найден алгоритм отыскания коэффициентов для бесконечных рядов относительно комплексного параметра, теоретически являющихся общим решением задачи трех тел. Но… для применения рядов Зундмана в практических расчетах с требуемой для них точностью требует получения такого числа членов этих рядов, что эта задача во много превосходит возможности вычислительных машин даже на сегодняшний день.

Поэтому численное интегрирование - единственный способ анализа решения уравнения (5)

5. Расчет начальных условий: добываем исходные данные

, прежде чем начинать численное интегрирование, следует озаботится расчетом начальных условий для решаемой задачи. В рассматриваемой задаче поиск начальных условий превращается в самостоятельную подзадачу, так как система (5) дает нам девять скалярных уравнений второго порядка, что при переходе к нормальной форме Коши повышает порядок системы ещё в 2 раза. То есть нам необходимо рассчитать целых 18 параметров - начальные положения и компоненты начальной скорости всех точек системы. Где мы возьмем данные о положении интересующих нас небесных тел? Мы живем в мире, где человек ходил по Луне - естественно человечество должно обладать информацией, как эта самая Луна движется и где она находится.

То есть, скажете вы, ты, чувак, предлагаешь нам взять с полок толстые астрономические справочники, сдуть с них пыль… Не угадали! Я предлагаю сходить за этими данными к тем, кто собственно ходил по Луне, к NASA, а именно в Лабораторию реактивного движения, Пасадена, штат Калифорния. Вот сюда - JPL Horizonts web interface .

Здесь, потратив немного времени на изучение интерфейса, мы добудем все необходимые нам данные. Выберем дату, например, да нам всё равно, но пусть это будет 27 июля 2018 года UT 20:21. Как раз в этот момент наблюдалась полная фаза лунного затмения. Программа выдаст нам огромную портянку

Полный вывод для эфемерид Луны на 27.07.2018 20:21 (начало координат в центре Земли)

******************************************************************************* Revised: Jul 31, 2013 Moon / (Earth) 301 GEOPHYSICAL DATA (updated 2018-Aug-13): Vol. Mean Radius, km = 1737.53+-0.03 Mass, x10^22 kg = 7.349 Radius (gravity), km = 1738.0 Surface emissivity = 0.92 Radius (IAU), km = 1737.4 GM, km^3/s^2 = 4902.800066 Density, g/cm^3 = 3.3437 GM 1-sigma, km^3/s^2 = +-0.0001 V(1,0) = +0.21 Surface accel., m/s^2 = 1.62 Earth/Moon mass ratio = 81.3005690769 Farside crust. thick. = ~80 - 90 km Mean crustal density = 2.97+-.07 g/cm^3 Nearside crust. thick.= 58+-8 km Heat flow, Apollo 15 = 3.1+-.6 mW/m^2 k2 = 0.024059 Heat flow, Apollo 17 = 2.2+-.5 mW/m^2 Rot. Rate, rad/s = 0.0000026617 Geometric Albedo = 0.12 Mean angular diameter = 31"05.2" Orbit period = 27.321582 d Obliquity to orbit = 6.67 deg Eccentricity = 0.05490 Semi-major axis, a = 384400 km Inclination = 5.145 deg Mean motion, rad/s = 2.6616995x10^-6 Nodal period = 6798.38 d Apsidal period = 3231.50 d Mom. of inertia C/MR^2= 0.393142 beta (C-A/B), x10^-4 = 6.310213 gamma (B-A/C), x10^-4 = 2.277317 Perihelion Aphelion Mean Solar Constant (W/m^2) 1414+-7 1323+-7 1368+-7 Maximum Planetary IR (W/m^2) 1314 1226 1268 Minimum Planetary IR (W/m^2) 5.2 5.2 5.2 ******************************************************************************* ******************************************************************************* Ephemeris / WWW_USER Wed Aug 15 20:45:05 2018 Pasadena, USA / Horizons ******************************************************************************* Target body name: Moon (301) {source: DE431mx} Center body name: Earth (399) {source: DE431mx} Center-site name: BODY CENTER ******************************************************************************* Start time: A.D. 2018-Jul-27 20:21:00.0003 TDB Stop time: A.D. 2018-Jul-28 20:21:00.0003 TDB Step-size: 0 steps ******************************************************************************* Center geodetic: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)} Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)} Center radii: 6378.1 x 6378.1 x 6356.8 km {Equator, meridian, pole} Output units: AU-D Output type: GEOMETRIC cartesian states Output format: 3 (position, velocity, LT, range, range-rate) Reference frame: ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch ******************************************************************************* JDTDB X Y Z VX VY VZ LT RG RR ******************************************************************************* $$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 1.537109094089627E-03 Y =-2.237488447258137E-03 Z = 5.112037386426180E-06 VX= 4.593816208618667E-04 VY= 3.187527302531735E-04 VZ=-5.183707711777675E-05 LT= 1.567825598846416E-05 RG= 2.714605874095336E-03 RR=-2.707898607099066E-06 $$EOE ******************************************************************************* Coordinate system description: Ecliptic and Mean Equinox of Reference Epoch Reference epoch: J2000.0 XY-plane: plane of the Earth"s orbit at the reference epoch Note: obliquity of 84381.448 arcseconds wrt ICRF equator (IAU76) X-axis: out along ascending node of instantaneous plane of the Earth"s orbit and the Earth"s mean equator at the reference epoch Z-axis: perpendicular to the xy-plane in the directional (+ or -) sense of Earth"s north pole at the reference epoch. Symbol meaning : JDTDB Julian Day Number, Barycentric Dynamical Time X X-component of position vector (au) Y Y-component of position vector (au) Z Z-component of position vector (au) VX X-component of velocity vector (au/day) VY Y-component of velocity vector (au/day) VZ Z-component of velocity vector (au/day) LT One-way down-leg Newtonian light-time (day) RG Range; distance from coordinate center (au) RR Range-rate; radial velocity wrt coord. center (au/day) Geometric states/elements have no aberrations applied. Computations by ... Solar System Dynamics Group, Horizons On-Line Ephemeris System 4800 Oak Grove Drive, Jet Propulsion Laboratory Pasadena, CA 91109 USA Information: http://ssd.jpl.nasa.gov/ Connect: telnet://ssd.jpl.nasa.gov:6775 (via browser) http://ssd.jpl.nasa.gov/?horizons telnet ssd.jpl.nasa.gov 6775 (via command-line) Author: [email protected] *******************************************************************************


Бр-р-р, что это? Без паники, для того, кто хорошо учил в школе астрономию, механику и математику тут боятся нечего. Итак, самое главное конечное искомые координаты и компоненты скорости Луны.

$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 1.537109094089627E-03 Y =-2.237488447258137E-03 Z = 5.112037386426180E-06 VX= 4.593816208618667E-04 VY= 3.187527302531735E-04 VZ=-5.183707711777675E-05 LT= 1.567825598846416E-05 RG= 2.714605874095336E-03 RR=-2.707898607099066E-06 $$EOE
Да-да-да, они декартовы! Если внимательно прочесть всю портянку, то мы узнаем, что начало этой системы координат совпадает с центром Земли. Плоскость XY лежит в плоскости земной орбиты (плоскости эклиптики) на эпоху J2000. Ось X направлена вдоль линии пересечения плоскости экватора Земли и эклиптики в точку весеннего равноденствия. Ось Z смотрит в направлении северного полюса Земли перпендикулярно плоскости эклиптики. Ну а ось Y дополняет всё это счастье до правой тройки векторов. По-умолчанию единицы измерения координат: астрономические единицы (умнички из NASA приводят и величину автрономической единицы в километрах). Единицы измерения скорости: астрономические единицы в день, день принимается равным 86400 секундам. Полный фарш!

Аналогичную информацию мы можем получить и для Земли

Полный вывод эфемерид Земли на 27.07.2018 20:21 (начало координат в центре масс Солнечной системы)

******************************************************************************* Revised: Jul 31, 2013 Earth 399 GEOPHYSICAL PROPERTIES (revised Aug 13, 2018): Vol. Mean Radius (km) = 6371.01+-0.02 Mass x10^24 (kg)= 5.97219+-0.0006 Equ. radius, km = 6378.137 Mass layers: Polar axis, km = 6356.752 Atmos = 5.1 x 10^18 kg Flattening = 1/298.257223563 oceans = 1.4 x 10^21 kg Density, g/cm^3 = 5.51 crust = 2.6 x 10^22 kg J2 (IERS 2010) = 0.00108262545 mantle = 4.043 x 10^24 kg g_p, m/s^2 (polar) = 9.8321863685 outer core = 1.835 x 10^24 kg g_e, m/s^2 (equatorial) = 9.7803267715 inner core = 9.675 x 10^22 kg g_o, m/s^2 = 9.82022 Fluid core rad = 3480 km GM, km^3/s^2 = 398600.435436 Inner core rad = 1215 km GM 1-sigma, km^3/s^2 = 0.0014 Escape velocity = 11.186 km/s Rot. Rate (rad/s) = 0.00007292115 Surface Area: Mean sidereal day, hr = 23.9344695944 land = 1.48 x 10^8 km Mean solar day 2000.0, s = 86400.002 sea = 3.62 x 10^8 km Mean solar day 1820.0, s = 86400.0 Moment of inertia = 0.3308 Love no., k2 = 0.299 Mean Temperature, K = 270 Atm. pressure = 1.0 bar Vis. mag. V(1,0) = -3.86 Volume, km^3 = 1.08321 x 10^12 Geometric Albedo = 0.367 Magnetic moment = 0.61 gauss Rp^3 Solar Constant (W/m^2) = 1367.6 (mean), 1414 (perihelion), 1322 (aphelion) ORBIT CHARACTERISTICS: Obliquity to orbit, deg = 23.4392911 Sidereal orb period = 1.0000174 y Orbital speed, km/s = 29.79 Sidereal orb period = 365.25636 d Mean daily motion, deg/d = 0.9856474 Hill"s sphere radius = 234.9 ******************************************************************************* ******************************************************************************* Ephemeris / WWW_USER Wed Aug 15 21:16:21 2018 Pasadena, USA / Horizons ******************************************************************************* Target body name: Earth (399) {source: DE431mx} Center body name: Solar System Barycenter (0) {source: DE431mx} Center-site name: BODY CENTER ******************************************************************************* Start time: A.D. 2018-Jul-27 20:21:00.0003 TDB Stop time: A.D. 2018-Jul-28 20:21:00.0003 TDB Step-size: 0 steps ******************************************************************************* Center geodetic: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)} Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)} Center radii: (undefined) Output units: AU-D Output type: GEOMETRIC cartesian states Output format: 3 (position, velocity, LT, range, range-rate) Reference frame: ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch ******************************************************************************* JDTDB X Y Z VX VY VZ LT RG RR ******************************************************************************* $$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.755663665315949E-01 Y =-8.298818915224488E-01 Z =-5.366994499016168E-05 VX= 1.388633512282171E-02 VY= 9.678934168415631E-03 VZ= 3.429889230737491E-07 LT= 5.832932117417083E-03 RG= 1.009940888883960E+00 RR=-3.947237246302148E-05 $$EOE ******************************************************************************* Coordinate system description: Ecliptic and Mean Equinox of Reference Epoch Reference epoch: J2000.0 XY-plane: plane of the Earth"s orbit at the reference epoch Note: obliquity of 84381.448 arcseconds wrt ICRF equator (IAU76) X-axis: out along ascending node of instantaneous plane of the Earth"s orbit and the Earth"s mean equator at the reference epoch Z-axis: perpendicular to the xy-plane in the directional (+ or -) sense of Earth"s north pole at the reference epoch. Symbol meaning : JDTDB Julian Day Number, Barycentric Dynamical Time X X-component of position vector (au) Y Y-component of position vector (au) Z Z-component of position vector (au) VX X-component of velocity vector (au/day) VY Y-component of velocity vector (au/day) VZ Z-component of velocity vector (au/day) LT One-way down-leg Newtonian light-time (day) RG Range; distance from coordinate center (au) RR Range-rate; radial velocity wrt coord. center (au/day) Geometric states/elements have no aberrations applied. Computations by ... Solar System Dynamics Group, Horizons On-Line Ephemeris System 4800 Oak Grove Drive, Jet Propulsion Laboratory Pasadena, CA 91109 USA Information: http://ssd.jpl.nasa.gov/ Connect: telnet://ssd.jpl.nasa.gov:6775 (via browser) http://ssd.jpl.nasa.gov/?horizons telnet ssd.jpl.nasa.gov 6775 (via command-line) Author: [email protected] *******************************************************************************


Здесь в качестве начала координат выбран барицентр (центр масс) Солнечной системы. Интересующие нас данные

$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.755663665315949E-01 Y =-8.298818915224488E-01 Z =-5.366994499016168E-05 VX= 1.388633512282171E-02 VY= 9.678934168415631E-03 VZ= 3.429889230737491E-07 LT= 5.832932117417083E-03 RG= 1.009940888883960E+00 RR=-3.947237246302148E-05 $$EOE
Для Луны нам понадобятся координаты и скорость относительно барицентра Солнечной системы, мы можем их посчитать, а можем попросит NASA дать нам такие данные

Полный вывод эфемерид Луны на 27.07.2018 20:21 (начало координат в центре масс Солнечной системы)

******************************************************************************* Revised: Jul 31, 2013 Moon / (Earth) 301 GEOPHYSICAL DATA (updated 2018-Aug-13): Vol. Mean Radius, km = 1737.53+-0.03 Mass, x10^22 kg = 7.349 Radius (gravity), km = 1738.0 Surface emissivity = 0.92 Radius (IAU), km = 1737.4 GM, km^3/s^2 = 4902.800066 Density, g/cm^3 = 3.3437 GM 1-sigma, km^3/s^2 = +-0.0001 V(1,0) = +0.21 Surface accel., m/s^2 = 1.62 Earth/Moon mass ratio = 81.3005690769 Farside crust. thick. = ~80 - 90 km Mean crustal density = 2.97+-.07 g/cm^3 Nearside crust. thick.= 58+-8 km Heat flow, Apollo 15 = 3.1+-.6 mW/m^2 k2 = 0.024059 Heat flow, Apollo 17 = 2.2+-.5 mW/m^2 Rot. Rate, rad/s = 0.0000026617 Geometric Albedo = 0.12 Mean angular diameter = 31"05.2" Orbit period = 27.321582 d Obliquity to orbit = 6.67 deg Eccentricity = 0.05490 Semi-major axis, a = 384400 km Inclination = 5.145 deg Mean motion, rad/s = 2.6616995x10^-6 Nodal period = 6798.38 d Apsidal period = 3231.50 d Mom. of inertia C/MR^2= 0.393142 beta (C-A/B), x10^-4 = 6.310213 gamma (B-A/C), x10^-4 = 2.277317 Perihelion Aphelion Mean Solar Constant (W/m^2) 1414+-7 1323+-7 1368+-7 Maximum Planetary IR (W/m^2) 1314 1226 1268 Minimum Planetary IR (W/m^2) 5.2 5.2 5.2 ******************************************************************************* ******************************************************************************* Ephemeris / WWW_USER Wed Aug 15 21:19:24 2018 Pasadena, USA / Horizons ******************************************************************************* Target body name: Moon (301) {source: DE431mx} Center body name: Solar System Barycenter (0) {source: DE431mx} Center-site name: BODY CENTER ******************************************************************************* Start time: A.D. 2018-Jul-27 20:21:00.0003 TDB Stop time: A.D. 2018-Jul-28 20:21:00.0003 TDB Step-size: 0 steps ******************************************************************************* Center geodetic: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Lat(deg),Alt(km)} Center cylindric: 0.00000000,0.00000000,0.0000000 {E-lon(deg),Dxy(km),Dz(km)} Center radii: (undefined) Output units: AU-D Output type: GEOMETRIC cartesian states Output format: 3 (position, velocity, LT, range, range-rate) Reference frame: ICRF/J2000.0 Coordinate systm: Ecliptic and Mean Equinox of Reference Epoch ******************************************************************************* JDTDB X Y Z VX VY VZ LT RG RR ******************************************************************************* $$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.771034756256845E-01 Y =-8.321193799697072E-01 Z =-4.855790760378579E-05 VX= 1.434571674368357E-02 VY= 9.997686898668805E-03 VZ=-5.149408819470315E-05 LT= 5.848610189172283E-03 RG= 1.012655462859054E+00 RR=-3.979984423450087E-05 $$EOE ******************************************************************************* Coordinate system description: Ecliptic and Mean Equinox of Reference Epoch Reference epoch: J2000.0 XY-plane: plane of the Earth"s orbit at the reference epoch Note: obliquity of 84381.448 arcseconds wrt ICRF equator (IAU76) X-axis: out along ascending node of instantaneous plane of the Earth"s orbit and the Earth"s mean equator at the reference epoch Z-axis: perpendicular to the xy-plane in the directional (+ or -) sense of Earth"s north pole at the reference epoch. Symbol meaning : JDTDB Julian Day Number, Barycentric Dynamical Time X X-component of position vector (au) Y Y-component of position vector (au) Z Z-component of position vector (au) VX X-component of velocity vector (au/day) VY Y-component of velocity vector (au/day) VZ Z-component of velocity vector (au/day) LT One-way down-leg Newtonian light-time (day) RG Range; distance from coordinate center (au) RR Range-rate; radial velocity wrt coord. center (au/day) Geometric states/elements have no aberrations applied. Computations by ... Solar System Dynamics Group, Horizons On-Line Ephemeris System 4800 Oak Grove Drive, Jet Propulsion Laboratory Pasadena, CA 91109 USA Information: http://ssd.jpl.nasa.gov/ Connect: telnet://ssd.jpl.nasa.gov:6775 (via browser) http://ssd.jpl.nasa.gov/?horizons telnet ssd.jpl.nasa.gov 6775 (via command-line) Author: [email protected] *******************************************************************************


$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 5.771034756256845E-01 Y =-8.321193799697072E-01 Z =-4.855790760378579E-05 VX= 1.434571674368357E-02 VY= 9.997686898668805E-03 VZ=-5.149408819470315E-05 LT= 5.848610189172283E-03 RG= 1.012655462859054E+00 RR=-3.979984423450087E-05 $$EOE
Чудесно! Теперь необходимо слегка обработать полученные данные напильником.

6. 38 попугаев и одно попугайское крылышко

Для начала определимся с масштабом, ведь наши уравнения движения (5) записаны в безразмерной форме. Данные, предоставленные NASA сами подсказывают нам, что за масштаб координат стоит взять одну астрономическую единицу. Соответственно в качестве эталонного тела, к которому мы будем нормировать массы других тел мы возьмем Солнце, а в качестве масштаба времени - период обращения Земли вокруг Солнца.

Все это конечно очень хорошо, но мы не задали начальные условия для Солнца. «Зачем?» - спросил бы меня какой-нибудь лингвист. А я бы ответил, что Солнце отнюдь не неподвижно, а тоже вращается по своей орбите вокруг центра масс Солнечной системы. В этом можно убедится, взглянув на данные NASA для Солнца

$$SOE 2458327.347916670 = A.D. 2018-Jul-27 20:21:00.0003 TDB X = 6.520050993518213E+04 Y = 1.049687363172734E+06 Z =-1.304404963058507E+04 VX=-1.265326939350981E-02 VY= 5.853475278436883E-03 VZ= 3.136673455633667E-04 LT= 3.508397935601254E+00 RG= 1.051791240756026E+06 RR= 5.053500842402456E-03 $$EOE
Взглянув на параметр RG мы увидим, что Солнце вращается вокруг барицентра Солнечной системы, и на 27.07.2018 центр звезды находится от него на расстоянии в миллион километров. Радиус Солнца, для справки - 696 тысяч километров. То есть барицентр Солнечной системы лежит в полумиллионе километров от поверхности светила. Почему? Да потому что все остальные тела, взаимодействующие с Солнцем так же сообщают ему ускорение, главным образом, конечно тяжеленький Юпитер. Соответственно у Солнца тоже есть своя орбита.

Мы конечно можем выбрать эти данные в качестве начальных условий, но нет - мы же решаем модельную задачу трех тел, и Юпитер и прочие персонажи в неё не входят. Так что в ущерб реализму, зная положение и скорости Земли и Луны мы пересчитаем начальные условия для Солнца, так, чтобы центр масс системы Солнце - Земля - Луна находился в начале координат. Для центра масс нашей механической системы справедливо уравнение

Поместим центр масс в начало координат, то есть зададимся , тогда

откуда

Перейдем к безразмерным координатам и параметрам, выбрав

Дифференцируя (6) по времени и переходя к безразмерному времени получаем и соотношение для скоростей

где

Теперь напишем программу, которая сформирует начальные условия в выбранных нами «попугаях». На чем будем писать? Конечно же на Питоне! Ведь, как известно, это самый лучший язык для математического моделирования.

Однако, если уйти от сарказма, то мы действительно попробуем для этой цели питон, а почему нет? Я обязательно приведу ссылку на весь код в моем профиле Github .

Расчет начальных условий для системы Луна - Земля - Солнце

# # Исходные данные задачи # # Гравитационная постоянная G = 6.67e-11 # Массы тел (Луна, Земля, Солнце) m = # Расчитываем гравитационные параметры тел mu = print("Гравитационные параметры тел") for i, mass in enumerate(m): mu.append(G * mass) print("mu[" + str(i) + "] = " + str(mu[i])) # Нормируем гравитационные параметры к Солнцу kappa = print("Нормированные гравитационные параметры") for i, gp in enumerate(mu): kappa.append(gp / mu) print("xi[" + str(i) + "] = " + str(kappa[i])) print("\n") # Астрономическая единица a = 1.495978707e11 import math # Масштаб безразмерного времени, c T = 2 * math.pi * a * math.sqrt(a / mu) print("Масштаб времени T = " + str(T) + "\n") # Координаты NASA для Луны xL = 5.771034756256845E-01 yL = -8.321193799697072E-01 zL = -4.855790760378579E-05 import numpy as np xi_10 = np.array() print("Начальное положение Луны, а.е.: " + str(xi_10)) # Координаты NASA для Земли xE = 5.755663665315949E-01 yE = -8.298818915224488E-01 zE = -5.366994499016168E-05 xi_20 = np.array() print("Начальное положение Земли, а.е.: " + str(xi_20)) # Расчитываем начальное положение Солнца, полагая что начало координат - в центре масс всей системы xi_30 = - kappa * xi_10 - kappa * xi_20 print("Начальное положение Солнца, а.е.: " + str(xi_30)) # Вводим константы для вычисления безразмерных скоростей Td = 86400.0 u = math.sqrt(mu / a) / 2 / math.pi print("\n") # Начальная скорость Луны vxL = 1.434571674368357E-02 vyL = 9.997686898668805E-03 vzL = -5.149408819470315E-05 vL0 = np.array() uL0 = np.array() for i, v in enumerate(vL0): vL0[i] = v * a / Td uL0[i] = vL0[i] / u print("Начальная скорость Луны, м/с: " + str(vL0)) print(" -//- безразмерная: " + str(uL0)) # Начальная скорость Земли vxE = 1.388633512282171E-02 vyE = 9.678934168415631E-03 vzE = 3.429889230737491E-07 vE0 = np.array() uE0 = np.array() for i, v in enumerate(vE0): vE0[i] = v * a / Td uE0[i] = vE0[i] / u print("Начальная скорость Земли, м/с: " + str(vE0)) print(" -//- безразмерная: " + str(uE0)) # Начальная скорость Солнца vS0 = - kappa * vL0 - kappa * vE0 uS0 = - kappa * uL0 - kappa * uE0 print("Начальная скорость Солнца, м/с: " + str(vS0)) print(" -//- безразмерная: " + str(uS0))


Выхлоп программы

Гравитационные параметры тел mu = 4901783000000.0 mu = 386326400000000.0 mu = 1.326663e+20 Нормированные гравитационные параметры xi = 3.6948215183509304e-08 xi = 2.912016088486677e-06 xi = 1.0 Масштаб времени T = 31563683.35432583 Начальное положение Луны, а.е.: [ 5.77103476e-01 -8.32119380e-01 -4.85579076e-05] Начальное положение Земли, а.е.: [ 5.75566367e-01 -8.29881892e-01 -5.36699450e-05] Начальное положение Солнца, а.е.: [-1.69738146e-06 2.44737475e-06 1.58081871e-10] Начальная скорость Луны, м/с: -//- безразмерная: [ 5.24078311 3.65235907 -0.01881184] Начальная скорость Земли, м/с: -//- безразмерная: Начальная скорость Солнца, м/с: [-7.09330769e-02 -4.94410725e-02 1.56493465e-06] -//- безразмерная: [-1.49661835e-05 -1.04315813e-05 3.30185861e-10]

7. Интегрирование уравнений движения и анализ результатов

Собственно само интегрирование сводится к более-менее стандартной для SciPy процедуре подготовки системы уравнений: преобразованию системы ОДУ к форме Коши и вызову соответствующих функций-решателей. Для преобразования системы к форме Коши вспоминаем, что

Тогда введя вектор состояния системы

сводим (7) и (5) к одному векторному уравнению

Для интегрирования (8) с имеющимися начальными условиями напишем немного, совсем немного кода

Интегрирования уравнений движения в задаче трех тел

# # Вычисление векторов обобщенных ускорений # def calcAccels(xi): k = 4 * math.pi ** 2 xi12 = xi - xi xi13 = xi - xi xi23 = xi - xi s12 = math.sqrt(np.dot(xi12, xi12)) s13 = math.sqrt(np.dot(xi13, xi13)) s23 = math.sqrt(np.dot(xi23, xi23)) a1 = (k * kappa / s12 ** 3) * xi12 + (k * kappa / s13 ** 3) * xi13 a2 = -(k * kappa / s12 ** 3) * xi12 + (k * kappa / s23 ** 3) * xi23 a3 = -(k * kappa / s13 ** 3) * xi13 - (k * kappa / s23 ** 3) * xi23 return # # Система уравнений в нормальной форме Коши # def f(t, y): n = 9 dydt = np.zeros((2 * n)) for i in range(0, n): dydt[i] = y xi1 = np.array(y) xi2 = np.array(y) xi3 = np.array(y) accels = calcAccels() i = n for accel in accels: for a in accel: dydt[i] = a i = i + 1 return dydt # Начальные условия задачи Коши y0 = # # Интегрируем уравнения движения # # Начальное время t_begin = 0 # Конечное время t_end = 30.7 * Td / T; # Интересующее нас число точек траектории N_plots = 1000 # Шаг времени между точкими step = (t_end - t_begin) / N_plots import scipy.integrate as spi solver = spi.ode(f) solver.set_integrator("vode", nsteps=50000, method="bdf", max_step=1e-6, rtol=1e-12) solver.set_initial_value(y0, t_begin) ts = ys = i = 0 while solver.successful() and solver.t <= t_end: solver.integrate(solver.t + step) ts.append(solver.t) ys.append(solver.y) print(ts[i], ys[i]) i = i + 1


Посмотрим что у нас получилось. Получилась пространственная траектория Луны на первые 29 суток от выбранной нами начальной точки


а так же её проекция в плоскость эклиптики.


«Эй, дядя, что ты нам впариваешь?! Это же окружность!».

Во-первых, таки не окружность - заметно смещение проекции траектории от начала координат вправо и вниз. Во-вторых - ничего не замечаете? Не, ну правда?


Обещаю подготовить обоснование того (на основе анализа погрешностей счета и данных NASA), что полученное смещение траектории не есть следствие ошибок интегрирования. Пока предлагаю читателю поверить мне на слово - это смещение есть следствие солнечного возмущения лунной траектории. Крутанем-ка еще один оборот



Во как! Причем обратите внимание на то, что исходя из начальных данных задачи Солнце находится как раз в той стороне, куда смещается траектория Луны на каждом обороте. Да это наглое Солнце ворует у нас наш любимый спутник! Ох уж это Солнце!

Можно сделать вывод, что солнечная гравитация влияет на орбиту Луны достаточно существенно - старушка не ходит по небу дважды одним и тем же путём. Картинка за полгода движения позволяет (по крайней мере качественно) убедится в этом (картинка кликабельна)

Интересно? Ещё бы. Астрономия вообще наука занятная.

Постскриптум

В вузе, где я учился и работал без малого семь лет - Новочеркасском политехе - ежегодно проводилась зональная олимпиада студентов по теоретической механике вузов Северного Кавказа. Трижды мы принимали и Всероссийскую олимпиаду. На открытии, наш главный «олимпиец», профессор Кондратенко А.И., всегда говорил: «Академик Крылов называл механику поэзией точных наук».

Я люблю механику. Всё то хорошее, чего я добился в своей жизни и карьере произошло благодаря этой науке и моим замечательным учителям. Я уважаю механику.

Поэтому, я никогда не позволю издеваться над этой наукой и нагло эксплуатировать её в своих целях никому, будь он хоть трижды доктор наук и четырежды лингвист, и разработал хоть миллион учебных программ. Я искренне считаю, что написание статей на популярном публичном ресурсе должно предусматривать их тщательную вычитку, нормальное оформление (формулы LaTeX - это не блажь разработчиков ресурса!) и отсутствие ошибок, приводящих к результатам нарушающим законы природы. Последнее вообще «маст хэв».

Я часто говорю своим студентам: «компьютер освобождает ваши руки, но это не значит, что при этом нужно отключать и мозг».

Ценить и уважать механику я призываю и вас, мои уважаемые читатели. Охотно отвечу на любые вопросы, а исходный текст примера решения задачи трех тел на языке Python, как и обещал, выкладываю в своем профиле Github .

Спасибо за внимание!

Оригинал взят у ss69100 в Лунные аномалии или фальшивая физика?

И даже в казалось бы давно устоявшихся теориях имеются вопиющие противоречия и очевидные ошибки , которые просто замалчиваются. Приведу простой пример.

Официальная физика, которую преподают в учебных заведениях, очень гордится тем, что ей известны соотношения между разными физическими величинами в виде формул, которые якобы надёжно подкреплены экспериментально. На том, как говорится, и стоим…

В частности, во всех справочниках и учебниках утверждается, что между двумя телами, имеющими массы (m ) и (M ), возникает сила притяжения (F ), которая прямо пропорциональна произведению этих масс и обратно пропорциональна квадрату расстояния (R ) между ними. Это соотношение обычно представляют в виде формулы «закона всемирного тяготения» :

где - гравитационная постоянная, равная примерно 6,6725×10 −11 м³/(кг·с²).

Давайте с помощью этой формулы подсчитаем, какова сила притяжения между Землёй и Луной, а также между Луной и Солнцем. Для этого нам нужно подставить в эту формулу соответствующие значения из справочников:

Масса Луны - 7,3477×10 22 кг

Масса Солнца - 1,9891×10 30 кг

Масса Земли - 5,9737×10 24 кг

Расстояние между Землёй и Луной = 380 000 000 м

Расстояние между Луной и Солнцем = 149 000 000 000 м

Сила притяжения между Землёй и Луной = 6,6725×10 -11 х 7,3477×10 22 х 5,9737×10 24 / 380000000 2 = 2,028×10 20 H

Сила притяжения между Луной и Солнцем = 6,6725×10 -11 х 7,3477·10 22 х 1,9891·10 30 / 149000000000 2 = 4,39×10 20 H

Получается, что сила притяжения Луны к Солнцу более чем вдвое (!) больше , чем сила притяжения Луны к Земле! Почему же тогда Луна летает вокруг Земли , а не вокруг Солнца? Где же здесь согласие теории с экспериментальными данными?

Если не верите своим глазам, пожалуйста, возьмите калькулятор, откройте справочники и убедитесь сами.

Согласно формуле «всемирного тяготения» для данной системы из трёх тел, как только Луна окажется между Землёй и Солнцем, она должна уйти с круговой орбиты вокруг Земли, превратившись в самостоятельную планету с параметрами орбиты, близкими к земной. Однако, Луна упорно «не замечает» Солнце, как будто его не существует вообще.

В первую очередь, давайте зададимся вопросом о том, что может быть неправильным в этой формуле? Вариантов здесь немного.

С точки зрения математики, данная формула может быть правильной, но тогда неправильными являются значения её параметров.

Например, современная наука может жестоко ошибаться в определении расстояний в космосе на основе ложных представлений о природе и скорости распространения света; или же неправильно оценивать массы небесных тел, пользуясь всё теми же чисто умозрительными заключениями Кеплера или Лапласа, выраженными в виде соотношений размеров орбит, скоростей и масс небесных тел; или же вообще не понимать природу массы макроскопического тела, о чём предельно откровенно повествуют все учебники физики, постулируя данное свойство материальных объектов, вне зависимости от его расположения и не углубляясь в причины его возникновения.

Также официальная наука может ошибаться в причине существования и принципах действия силы тяготения, что наиболее вероятно. Например, если массы не обладают притягивающим действием (чему, кстати говоря, имеются тысячи наглядных доказательств , только они замалчиваются), тогда эта «формула всемирного тяготения» просто отображает некую идею, высказанную Исааком Ньютоном, которая на поверку оказалась ложной .

Ошибиться можно тысячами разных способов, а вот истина - одна. И её официальная физика сознательно скрывает, иначе как объяснить отстаивание такой вот абсурдной формулы?

Первым и очевидным следствием того, что «формула всемирного тяготения» не работает, является тот факт, что у Земли отсутствует динамическая реакция на Луну . Проще говоря, два таких больших и близких небесных тела, одно из которых по диаметру всего вчетверо меньше от другого, должны были бы (согласно воззрениям современной физики) вращаться вокруг общего центра масс - т.н. барицентра . Однако, Земля вращается строго вокруг своей оси, и даже приливы и отливы в морях и океанах не имеют к положению Луны на небосводе ровным счётом никакого отношения.

С Луной связан целый ряд совершенно вопиющих фактов несоответствий с устоявшимися воззрениями классической физики, которые в литературе и Интернете стыдливо называются «лунными аномалиями» .

Самая очевидная аномалия - точнейшее совпадение периода обращения Луны вокруг Земли и вокруг своей оси, из-за чего она всегда обращена к Земле одной стороной. Существует множество причин, чтобы эти периоды всё больше рассинхронизировались на каждом витке Луны вокруг Земли.

Например, никто не станет утверждать, что Земля и Луна являются двумя идеальными шарами с равномерным распределением массы внутри. С точки зрения официальной физики совершенно очевидно, что на движение Луны существенное влияние должны оказывать не только взаимное расположение Земли, Луны и Солнца, но даже пролёты Марса и Венеры в периоды максимального сближения их орбит с земной. Опыт космических полётов на околоземной орбите показывает, что достичь стабилизации по типу лунной можно только в том случае, если постоянно подруливать микродвигателями ориентации. Но чем и как подруливает Луна? И главное - для чего?

Эта «аномалия» выглядит ещё более обескураживающе на фоне того малоизвестного факта, что официальная наука до сих пор не выработала приемлемого объяснения траектории , по которой Луна движется вокруг Земли. Орбита Луны отнюдь не круговая и даже не эллиптическая. Странная кривая , которую Луна описывает над нашими головами, согласуется всего лишь с длинным списком статистических параметров, изложенных в соответствующих таблицах .

Эти данные собраны на основе многолетних наблюдений, но отнюдь не на базе каких-либо расчётов . Именно благодаря этим данным можно предсказать те или иные события с большой точностью, например, солнечные или лунные затмения, максимальное приближение или удаление Луны относительно Земли и т.д.

Так вот, именно на этой странной траектории Луна ухитряется всё время быть развёрнутой к Земле только одной стороной!

Конечно же, это далеко не всё.

Оказывается, Земля двигается по орбите вокруг Солнца отнюдь не с равномерной скоростью , как хотелось бы официальной физике, а делает небольшие притормаживания и рывки вперёд по направлению своего движения, которые синхронизированы с соответствующим положением Луны. Однако, никаких движений в стороны, перпендикулярные к направлению своей орбиты, Земля не делает, несмотря на то, что Луна может находиться с любой стороны от Земли в плоскости своей орбиты.

Официальная физика не только не берётся описать или объяснить эти процессы - она о нихпросто умалчивает ! Такой полумесячный цикл рывков земного шара отлично коррелирует со статистическими пиками землетрясений , но где и когда вы об этом слышали?

А знаете ли вы, что в системе космических тел Земля-Луна не существует никаких точек либрации , предсказанных Лагранжем на основе закона «всемирного тяготения»?

Дело в том, что область тяготения Луны не превышает расстояния 10 000 км от её поверхности. Этому факту имеется множество очевиднейших подтверждений. Достаточно вспомнить о геостационарных спутниках, на которые положение Луны не влияет никак, или научно-сатирическую историю с зондом «Смарт-1» от ЕКА , с помощью которого собирались между делом сфотографировать места прилунения «Аполлонов » ещё в 2003-2005 годах.

Зонд «Смарт-1» был создан как экспериментальный космический аппарат с двигателями на малой ионной тяге, но с огромным временем работы. Миссией ЕКА предусматривался постепенный разгон аппарата, выведенного на круговую орбиту вокруг Земли с тем, чтобы, двигаясь по спиралевидной траектории с набором высоты, достичь внутренней точки либрации системы Земля-Луна. Согласно предсказаниям официальной физики, начиная с этого момента, зонд должен был изменить свою траекторию, перейдя на высокую окололунную орбиту, и начать длительный манёвр торможения, постепенно сужая спираль вокруг Луны.

Но всё было бы хорошо, если бы официальная физика и расчёты, сделанные с её помощью, соответствовали реальности . В действительности , после достижения точки либрации, «Смарт-1» продолжал полёт по раскручивающейся спирали, и на следующих витках даже не думал реагировать на приближающуюся Луну.

С этого момента вокруг полёта «Смарта-1» начался удивительный заговор молчания и откровенной дезинформации, пока траектория его полёта не позволила, наконец, просто разбить его о поверхность Луны, о чём официозные научно-популяризаторские Интернет-ресурсы поспешили сообщить под соответствующим информационным соусом как о великом достижении современной науки, которая вдруг решила «изменить» миссию аппарата и со всего маху хряснуть десятками миллионов потраченных на проект валютных денег о лунную пыль.

Естественно, на последнем витке своего полёта зонд «Смарт-1» вошёл наконец в область тяготения Луны, однако он никак не смог бы сбросить скорость для выхода на низкую окололунную орбиту с помощью своего маломощного двигателя. Расчёты европейских баллистиков вошли в разительное противоречие с реальной действительностью.

И такие случаи при исследованиях дальнего космоса отнюдь не единичны, а повторяются с завидной постоянностью, начиная от первых проб попадания в Луну или отправки зондов к спутникам Марса, заканчивая последними попытками выйти на орбиты вокруг астероидов или комет, сила притяжения у которых полностью отсутствует даже на их поверхности.

Но тогда у читателя должен возникнуть совершенно закономерный вопрос: как же ракетно-космическая отрасль СССР в 60-х и 70-х годах ХХ века ухитрилась исследовать Луну с помощью автоматических аппаратов, пребывая в плену ложных научных воззрений? Как советские баллистики рассчитали правильную трассу полёта к Луне и обратно, если одна из самых базовых формул современной физики оказывается фикцией? Наконец, как в ХХI веке рассчитывают орбиты лунных спутников-автоматов, производящих близкое фотографирование и сканирование Луны?

Очень просто! Как и во всех других случаях, когда практика показывает расхождение с физическими теориями, в дело вступает его величество Опыт , который подсказывает правильное решение той или иной проблемы . После череды совершенно закономерных неудач, эмпирическим образом баллистики нашли некие поправочные коэффициенты для тех или иных этапов полётов к Луне и другим космическим телам, которые вводят в бортовые компьютеры современных автоматических зондов и систем космической навигации.

И всё работает! Но главное, появляется возможность протрубить на весь мир об очередной победе мировой науки, и далее учить легковерных детей и студентов формуле «всемирного тяготения», которая к реальной действительности имеет отношение не большее, чем треуголка барона Мюнхгаузена к его эпическим подвигам.

И если вдруг некий изобретатель выступит с очередной идеей нового способа передвижения в космосе, нет ничего проще, чем объявить его шарлатаном на том простом основании, что его расчёты противоречат той же пресловутой формуле «всемирного тяготения»… Комиссии по борьбе с лженаукой при академиях наук разных стран работают, не покладая рук.

Это тюрьма , товарищи. Большая планетарная тюрьма с лёгким налётом наукообразности для нейтрализации особо ретивых особей, посмевших быть умными. Остальных достаточно женить, чтобы, следуя меткому замечанию Карела Чапека, у них автобиография закончилась…

Кстати, все параметры траекторий и орбит «пилотируемых полётов» от НАСА к Луне в 1969-1972 годах рассчитаны и опубликованы именно на основании допущений о существовании точек либрации и о выполнении закона всемирного тяготения для системы Земля-Луна. Разве только одно это не объясняет, почему все программы пилотируемого покорения Луны после 70-х годов ХХ века были свёрнуты ? Что легче: тихо съехать с темы или признаваться в фальсификации всей физики?

Наконец, у Луны имеется целый ряд удивительных феноменов, называемых «оптическими аномалиями» . Эти аномалии уже настолько не лезут ни в какие ворота официальной физики, что о них предпочитается полностью умалчивать, заменяя интерес к ним на якобы постоянно регистрируемую активность НЛО на поверхности Луны.

С помощью выдумок жёлтой прессы, поддельных фото- и видеоматериалов о якобы постоянно перемещающихся над Луной летающих тарелках и громадных сооружениях инопланетян на её поверхности, закулисные хозяева пытаются покрывать информационным шумом действительно фантастическую реальность Луны , о которой обязательно следует упомянуть в этой работе.

Самая очевидная и наглядная оптическая аномалия Луны видна всем землянам невооружённым взглядом, поэтому остаётся только удивляться тому, что практически никто на это не обращает внимания. Посмотрите, как выглядит Луна в чистом ночном небе в моменты полнолуния? Она выглядит, как плоское круглое тело (например, монета), но не как шар !

Шарообразное тело с довольно существенными неровностями на своей поверхности, в случае его освещения источником света, находящегося сзади от наблюдателя, должно в наибольшей степени отсвечивать ближе к своему центру, а по мере приближения к краю шара, светимость должна плавно уменьшаться.

Об этом вопиет наверное самый известный закон оптики, который звучит так: «Угол падения луча равен углу его отражения». Но на Луну это правило отнюдь не распространяется. В силу непонятных для официальной физики причин, лучи света, попадающие в край лунного шара, отражаются… назад к Солнцу, отчего мы видим Луну в полнолуние как некую монету, но не как шар.

Ещё большую сумятицу в умы вносит не менее очевидная наблюдаемая вещь - постоянное значение уровня светимости освещённых участков Луны для наблюдателя с Земли. Проще говоря, если предположить, что у Луны имеется некое свойство направленного рассеяния света, то приходится признать, что отражение света меняет свой угол в зависимости от положения системы Солнце-Земля-Луна. Никто не сможет оспорить тот факт, что даже узкий серп молодой Луны даёт светимость точно такую же, как и соответствующий ему по площади центральный участок половинной Луны. А это означает, что Луна каким-то образом управляет углом отражения солнечных лучей, чтобы они всегда отражались от её поверхности именно к Земле!

Но когда наступает полнолуние, светимость Луны скачкообразно увеличивается . Это означает, что поверхность Луны удивительным образом расщепляет отражённый свет на два основных направления - к Солнцу и Земле. Отсюда следует другой ошеломительный вывод о том, что Луна является практически невидимой для наблюдателя из космоса , который находится не на прямых отрезках Земля-Луна или Солне-Луна. Кому и зачем понадобилось прятать Луну в космосе в оптическом диапазоне?…

Чтобы понять, в чём прикол, в советских лабораториях потратили уйму времени на оптические эксперименты с лунным грунтом, доставленным на Землю автоматическими аппаратами «Луна-16», «Луна-20» и «Луна-24». Однако, параметры отражения света, в том числе солнечного, от лунного грунта вполне вписывались во все известные каноны оптики. Лунный грунт на Земле вовсе не хотел показывать тех чудес, которые мы видим на Луне. Выходит, что материалы на Луне и на Земле ведут себя по-разному ?

Вполне возможно. Ведь неокисляемую плёнку толщиной в несколько атомов железа на поверхности любых предметов, насколько мне известно, в земных лабораториях так до сих пор и не удалось получить…

Масла в огонь подлили фотографии с Луны, переданные советскими и американскими автоматами, которые удалось посадить на её поверхность. Представьте себе удивление тогдашних учёных, когда все фотографии на Луне получались строго чёрно-белые - без единого намёка на такой привычный для нас радужный спектр.

Если бы фотографировался только лунный пейзаж, равномерно усыпанный пылью от взрывов метеоритов , это ещё как-то можно было бы понять. Но чёрно-белой получалась дажекалибровочная цветная пластинка на корпусе посадочного аппарата! Любой цвет на поверхности Луны превращается в соответствующую градацию серого, что беспристрастно фиксируют все фотографии поверхности Луны, передаваемые автоматическими аппаратами разных поколений и миссий по сегодняшний день.

Теперь представьте, в какой глубокой… луже сидят американцы с их бело-сине-красными звёздно-полосатыми флагами, якобы сфотографированными на поверхности Луны доблестными астронавтами-«первопроходимцами».

(Кстати, их цветные картинки и видеозаписи свидетельствуют о том, что американцы вообще туда ничего ни разу не посылали! - Ред .).

Скажите, вы бы на их месте сильно старались возобновить исследования Луны и попасть на её поверхность хоть с помощью какого-нибудь «пендосохода», зная, что изображения или видеоролики получатся только черно-белыми? Разве что оперативно их раскрашивать, как старые фильмы… Но, чёрт возьми, в какие цвета красить куски скал, местные камни или крутые склоны гор!?.

Кстати говоря, очень похожие проблемы поджидали НАСА и на Марсе. Всем исследователям уже наверняка набила оскомину мутная история с несоответствием цветов, точнее говоря, с явным сдвигом всего марсианского видимого спектра на его поверхности в красную сторону. Когда работников НАСА подозревают в намеренном искажении изображений с Марса (якобы скрывающих голубое небо, зелёные ковры лужаек, синеву озёр, ползающих местных жителей…), я призываю вспомнить Луну…

Подумайте, может на разных планетах просто действуют разные физические законы ? Тогда очень многое сразу встаёт на свои места!

Но вернёмся пока к Луне. Давайте закончим с перечнем оптических аномалий, а потом примемся за следующие разделы Лунных чудес.

Луч света, проходящий вблизи поверхности Луны, получает существенные разбросы по направлению, из-за чего современная астрономия не может даже вычислить время, потребное для покрытия звёзд телом Луны.

Никаких идей, почему такое происходит, официальная наука не высказывает, кроме отвязно-бредовых в стиле электростатических причин перемещения лунной пыли на больших высотах над её поверхностью или деятельности неких лунных вулканов, как нарочно выбрасывающих преломляющую свет пыль точно в том месте, где ведётся наблюдение за данной звездой. А так, вообще-то, лунных вулканов пока никто не наблюдал.

Как известно, земная наука умеет собрать информацию о химическом составе удалённых небесных тел за счёт изучения молекулярных спектров излучения-поглощения. Так вот, для самого близкого к Земле небесного тела - Луны - такой способ определения химического состава поверхности не проходит ! Лунный спектр практически лишён полос, могущих дать информацию о составе Луны .

Единственная достоверная информация о химическом составе лунного реголита получена, как известно, при изучении проб, взятых советскими «Лунами». Но даже теперь, когда есть возможность сканировать поверхность Луны с низкой окололунной орбиты с помощью автоматических аппаратов, сообщения о нахождении той или иной химической субстанции на её поверхности носят крайне противоречивый характер. Даже по Марсу - и то информации значительно больше.

И ещё об одной удивительной оптической особенности поверхности Луны. Это свойство является следствием уникального обратного рассеяния света, с которого я начал рассказ об оптических аномалиях Луны. Итак, практически весь падающий на Луну свет отражается в сторону Солнца и Земли.

Давайте вспомним, что ночью , при соответствующих условиях, мы можем прекрасно видеть неосвещённую Солнцем часть Луны, которая в принципе должна быть совершенно чёрной, если бы не… вторичное освещение Земли! Земля, будучи освещаемой Солнцем, отражает часть солнечного света в сторону Луны. И весь этот свет, который освещает теневую часть Луны, возвращается назад на Землю !

Отсюда совершенно логично предположить, что на поверхности Луны, даже на освещённой Солнцем стороне, всё время царят сумерки . Данная догадка великолепно подтверждается фотографиями лунной поверхности, сделанными советскими луноходами. Посмотрите при случае на них внимательно; на все, которые удастся добыть. Они сделаны при прямом солнечном освещении без влияния искажений атмосферы, но выглядят так, как будто в земных сумерках подтянули контрастность чёрно-белой картинки.

В таких условиях тени от предметов на поверхности Луны должны быть абсолютно чёрными, подсвечиваемые только ближайшими звёздами и планетами, уровень освещения от которых на много порядков ниже от солнечного. Это означает, что увидеть предмет, находящийся на Луне в тени, не представляется возможным с помощью любых известных оптических средств.

Для подведения краткого итога оптическим феноменам Луны, предоставим слово независимому исследователю А.А. Гришаеву , автору книги о «цифровом» физическом мире , который, развивая свои идеи, в очередной статье указывает:

«Учёт факта наличия этих феноменов предоставляет новые, убийственные аргументы в поддержку тех, кто считает подделками кино- и фотоматериалы, которые якобы свидетельствуют о пребывании американских астронавтов на поверхности Луны. Ведь мы даём ключи для проведения простейшей и беспощадной независимой экспертизы.

Если нам демонстрируют на фоне залитых солнечным светом (!) лунных пейзажей астронавтов, на скафандрах которых нет чёрных теней с противосолнечной стороны, или неплохо освещённую фигуру астронавта в тени «лунного модуля», или цветные (!) кадры с колоритной передачей цветов американского флага, то это всё неопровержимые улики, кричащие о фальсификации .

Фактически, нам неизвестно ни одного кино- или фотодокумента, изображающего астронавтов на Луне при настоящем лунном освещении и с настоящей лунной цветовой «палитрой».

И тут же продолжает:

«Слишком аномальны физические условия на Луне, и нельзя исключить, что окололунное пространство губительно для земных организмов. На сегодня нам известна единственная модель, объясняющая короткодействие лунного тяготения, а заодно и происхождение сопутствующих аномальных оптических феноменов - это наша модель «зыбкого пространства» .

И если эта модель верна, то вибрации «зыбкого пространства» ниже некоторой высоты над поверхностью Луны вполне способны разрывать слабые связи в молекулах белков - с разрушением их третичной и, возможно, вторичной структур.

Насколько нам известно, из окололунного пространства живыми вернулись черепашки на борту советского аппарата «Зонд-5», который произвёл облёт Луны с минимальным удалением от её поверхности примерно в 2000 км. Возможно, что при более близком к Луне прохождении аппарата, животные погибли бы в результате денатурации белков в их организмах. Если от космической радиации защититься весьма сложно, но всё-таки возможно, то от вибраций «зыбкого пространства» физической защиты нет…»

Приведённый отрывок лишь малая часть работы, с оригиналом которой я настоятельно рекомендую ознакомится на сайте автора

А ещё мне нравится, что лунную экспедицию пересняли в хорошем качестве. А то и правда, смотреть было противно. Всё-таки 21 век. Так что встречайте, в качестве HD «Катания на санях на масленицу».

Что еще почитать